下书吧

下书吧>传说中的文曲星是什么 > 第224章 开平方数的奇妙估算(第1页)

第224章 开平方数的奇妙估算(第1页)

《第224章开平方数的奇妙估算》

在经历了泰勒展开式的深入学习后,戴浩文和学子们稍作休整,便迎来了新的知识篇章——开平方数的估算。

这一日,阳光透过学堂的窗户,洒在学子们充满期待的脸庞上。戴浩文站在讲台上,目光炯炯。

“诸位学子,今日我们将一同探索开平方数的估算之法。”戴浩文的声音沉稳有力。

他转身在黑板上写下一个数字,“比如,要估算√10的值,我们该如何着手呢?”

学子们面面相觑,陷入沉思。

戴浩文微微一笑,说道:“首先,我们要找到两个完全平方数,使得所求的开平方数介于它们之间。对于√10,我们知道3的平方是9,4的平方是16,所以√10就在3和4之间。”

“那如何进一步精确估算呢?”有学子问道。

戴浩文点了点头,继续说道:“我们可以采用逐步逼近的方法。假设我们先估计√10约为3。1,那么3。1的平方是9。61,小于10;再假设是3。2,其平方为10。24,大于10。所以√10就在3。1和3。2之间。”

学子们听得入神,纷纷拿起笔在纸上计算起来。

戴浩文接着举例:“再看√20,4的平方是16,5的平方是25,所以√20在4和5之间。我们先假设是4。4,平方后是19。36,小于20;假设是4。5,平方后是20。25,大于20,所以√20就在4。4和4。5之间。”

王强抬起头,疑惑地问:“先生,这样逐步估算,是不是很麻烦?有没有更简便的方法?”

戴浩文笑了笑,说道:“莫急,且听我慢慢道来。有一种方法叫二分法。还是以√10为例,我们先取3和4的中间值3。5,其平方为12。25,大于10,所以√10在3和3。5之间。再取3和3。5的中间值3。25,平方后为10。5625,大于10,所以√10在3和3。25之间。这样不断缩小范围,就能越来越精确地估算出开平方数的值。”

为了让学子们更好地理解,戴浩文又出了几道题目让大家现场练习。

“估算√15,√25,√30。”

学子们埋头计算,戴浩文在教室里踱步,观察着大家的计算过程,不时给予指导。

“李华,计算平方的时候要仔细。”

“张明,注意判断范围。”

过了一会儿,戴浩文让大家停下,开始讲解练习题。

“对于√15,我们知道3的平方是9,4的平方是16,所以√15在3和4之间。先假设是3。5,平方后是12。25,小于15,所以√15在3。5和4之间。再取中间值3。75,平方后是14。0625,小于15,所以√15在3。75和4之间。”

戴浩文讲解完练习题,又问道:“那如果数字较大,比如√120,该怎么估算呢?”

学子们思考片刻,赵婷说道:“先生,是不是还是先找两个相邻的完全平方数?”

戴浩文赞许地点点头:“赵婷说得对。10的平方是100,11的平方是121,所以√120在10和11之间。然后再用刚才的方法逐步逼近。”

戴浩文接着说:“开平方数的估算在生活中也有很多用处。比如要建造一个正方形的场地,已知面积,我们就可以通过估算边长来规划材料。”

他在黑板上画出一个正方形,“假设场地面积是80平方米,那么边长就是√80。我们先估算√80在8和9之间,然后逐步精确。”

学子们纷纷点头,明白了估算的实际意义。

戴浩文又强调:“在估算的过程中,大家要多练习,提高计算的速度和准确性。同时,也要注意误差的控制,尽量使估算值接近真实值。”

接下来,戴浩文又给学子们介绍了一些特殊的估算技巧。

“如果数字接近某个完全平方数,比如√85,它接近9的平方81,我们可以先以9为基础进行估算。”

戴浩文边说边在黑板上计算演示。

“假设是9。2,平方后是84。64,小于85;假设是9。3,平方后是86。49,大于85,所以√85在9。2和9。3之间。”

已完结热门小说推荐

最新标签